最新久久香蕉国产线看观看45视频_日韩AV毛片在线观看免费_亚洲精品日韩专区在线观看_亚洲欧洲无码成人AV_成人午夜免费电影在线观看_国产成年无码久久久_欧美日韩国产大片在线观看_日本中文字幕一区在线_免费一级黄色欧美视频_老湿机69免费私人电影

設(shè)為首頁(yè) | 加入收藏
13585522224

新聞資訊

您的位置:首頁(yè) > 新聞資訊 > 產(chǎn)品工藝 > 基于工藝參數(shù)的7005鋁合金力學(xué)性能的支持向量回歸預(yù)測(cè)

基于工藝參數(shù)的7005鋁合金力學(xué)性能的支持向量回歸預(yù)測(cè)

發(fā)布人:上海艾荔艾金屬材料有限公司bt990.com.cn 更新時(shí)間:2015-12-19
根據(jù)7005鋁合金在不同工藝參數(shù)(擠壓溫度、擠壓速度、淬火方式和時(shí)效條件)下的力學(xué)性能(抗拉強(qiáng)度σb、屈服強(qiáng)度σ0.2和硬度HB)實(shí)測(cè)數(shù)據(jù)集,應(yīng)用基于粒子群算法(PSO)尋優(yōu)的支持向量回歸(SVR)結(jié)合留一交叉驗(yàn)證(LOOCV)的方法,對(duì)7005鋁合金力學(xué)性能進(jìn)行建模和預(yù)測(cè)研究,并與偏最小二乘法(PLS)、反向傳播人工神經(jīng)網(wǎng)絡(luò)(BPNN)和兩者結(jié)合的PLS-BPNN模型的預(yù)測(cè)結(jié)果進(jìn)行比較。
基于工藝參數(shù)的7005鋁合金力學(xué)性能的支持向量回歸預(yù)測(cè)Quantitative prediction of mechanical properties of 7005 Al alloys from processing parameters via support vector regression
根據(jù)7005鋁合金在不同工藝參數(shù)(擠壓溫度、擠壓速度、淬火方式和時(shí)效條件)下的力學(xué)性能(抗拉強(qiáng)度σb、屈服強(qiáng)度σ0.2和硬度HB)實(shí)測(cè)數(shù)據(jù)集,應(yīng)用基于粒子群算法(PSO)尋優(yōu)的支持向量回歸(SVR)結(jié)合留一交叉驗(yàn)證(LOOCV)的方法,對(duì)7005鋁合金力學(xué)性能進(jìn)行建模和預(yù)測(cè)研究,并與偏最小二乘法(PLS)、反向傳播人工神經(jīng)網(wǎng)絡(luò)(BPNN)和兩者結(jié)合的PLS-BPNN模型的預(yù)測(cè)結(jié)果進(jìn)行比較。結(jié)果表明:基于SVR-LOOCV法的預(yù)測(cè)精度最高,對(duì)3種力學(xué)性能(σb、σ0.2和HB)預(yù)測(cè)的均方根誤差(RMSE)分別為4.531 9 MPa、14.550 8 MPa和HB1.414 2,其平均相對(duì)誤差(MRE)分別為0.72%、2.61%和0.66%,均比PLS、BPNN和PLS-BPNN方法預(yù)測(cè)的RMSE和MRE要小。
The support vector regression (SVR) approach based on the particle swarm optimization (PSO) for its parameter optimization, combined with leave-one-out cross validation (LOOCV), was proposed to predict the mechanical properties (tensile strength σb, yield strength σ0.2?and hardness HB) of 7005 Al alloys under different processing parameters including extrusion temperature, extrusion velocity, quenching type and aging time. The results strongly support that the prediction precision of SVR-LOOCV method is superior to those of partial least squares (PLS), back-propagation neural networks (BPNN) and their combination PLS-BPNN model by applying the identical dataset. The root mean square errors (RMSE) for σb, σ0.2?and HB achieved by SVR-LOOCV are 4.531 9 MPa, 14.550 8 MPa and HB 1.414 2, respectively, and their mean relative errors (MRE) are 0.72%, 2.61% and 0.66%, respectively, which are less than those predicted by PLS, BPNN or PLS-BPNN approach.
全文下載:http://pan.baidu.com/s/1kUiM2ur

作為值得信賴的合作伙伴和高品質(zhì)金屬合金的半成品供應(yīng)商,艾荔艾擁有完善的服務(wù)體系和專業(yè)的團(tuán)隊(duì)。在同客戶交易的過(guò)程中,我們力求根據(jù)不同的應(yīng)用需求將我們的產(chǎn)品做到精益求精。針對(duì)當(dāng)前和未來(lái)的市場(chǎng)需求,艾荔艾致力于為客戶提供最佳的金屬材料解決方案。

AILIAI has been a reliable partner and supplier of sophisticated and high-quality semi-finished products maed of alloys. In dialogue with our customers, we optimise our products to meet the specific application requirements. AILIAI develops the best alloy material solutions for current and future challenges.

獲取更多我們供應(yīng)的合金和服務(wù)信息,請(qǐng)致電086-021-67660801或發(fā)電子郵件[email protected]聯(lián)系我們,您也可以通過(guò)微博微信和我們互動(dòng)。

For more information on the alloys and services that we supply,?call us?at 086-021-67660801 or email us at [email protected]. You can also get in touch on social media, we are constantly active on?Weibo?and?Weixin.